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1 INTRODUCTION

Chaff can be used for the protection of ships, by using it in the seduction mode or the confusion mode. In
the seduction mode the inbound Anti-Ship Missile (ASM) transfers lock onto the chaff cloud in preference
to the ship. One obvious requirement for the success of this technique is that the perceived radar cross
section of the chaff cloud is large relative to that of the ship. However, a chaff cloud is an extended target,
and the notion of radar cross section strictly applies only to point targets. If the missile seeker is to track the
chaff cloud in preference to a ship target, then the effect of a chaff cloud upon the shape of the signal
returned as processed by the individual radar system needs to be analysed. Since a chaff cloud consists of
a large number of individual scatterers randomly distributed in space and orientation, the shape of the
returned signal is a statistical quantity.

At recent trials held at the Proof and Experimental Establishment, Port Wakefield, the radar cross sections
of some shipboard chaff rounds were measured using an instrumented Cyrano Radar. The author was
present at these trials, and noted the appearance of the time domain return of the chaff cloud, as displayed
on a A-scope. It consisted of a large number of peaks whose lifetime was of the order of one second, or less.
Hence, the statistical nature of the return of the chaff cloud cannot be neglected in assessing the effect of this
return upon the radar system. Since the range discriminant must be a non-linear transformation of the
signal, we require a random sample of the returned signal so that we can perform a Monte-Carlo analysis
of its effect upon the range discriminant.

In this report we develop a technique which simulates the time domain return from a large number of
stationary scatterers. Since pulsed radars have poor doppler resolution, this technique is suitable for pulsed
radars. We also assume that multiple incoherent scattering can be neglected (conditions for this are derived
in Section 2), although many of our conclusions will be seen to be insensitive to this assumption. The key
to this technique is that the effect of a cloud of stationary scatterers upon the returned signal can be
manipulated as if it were the spectral representation of a strictly band limited stationary complex Gaussian
random series in frequency space. By generating a random sample of this random series in frequency space,
and using convolution integrals, a random sample of the return of this type of cloud can be generated. The
numerical implementation of this scheme is easier if we treat the signal after it has been processed by a
matched filter; that is, if we obtain a sample of the video signal. A Monte-Carlo analysis of the returned
signal as processed by the detector is performed, and compared to the some analytical results. The range
discriminant is then subjected to the same Monte-Carlo analysis. Various statistical characteristics of the
range discriminant are then obtained, and related to features of the chaff cloud.

2 THEORY

2.1 First Order Multiple Scattering Theory

As an incident wave propagates through a cloud of scatterers, it loses energy due to scattering and
absorption by the scatterers. Since chaff is intended to reflect strongly, the dominant process we shall be
concerned with is scattering rather than absorption. The incident energy flux (or the power of the coherent
wave) within the cloud due to a radar beam is given by (Ishimaru 1978):

Gt()
Si = Pt - exp(-y) 2.1.1

R

y= fp (crt(1))ds 2.1.2

0

Here, Skis the incident flux, Gt(1) is the one way antenna gain function in the direction specified by the unit
vector i, Pt is the transmitted power, R is the distance from the transmitter to the volume element in
question, and (or(i)) is the average total scattering cross section of the scatterer. The line of integration is
along the propagation of the wave, and the quantity y is the optical path length of the ray in question.
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Throughout this report, angular brackets will indicate an average taken with respect to the distribution
describing the scatterers.

If we ignore the contributions due to multiple incoherent scattering, then a simple radar equation approach
gives the average received power Pr from a given volume element dV as:

.2
X2 = P(a(i))exp(-2y)dV 2.1.3(4n)3 R4

Here, (ab(b)) is the average back scattering radar cross section of the scatterers, p is the density of the
scatterers, and X is the incident wavelength. Ishimaru refers to this approximation as First Order Multiple
Scattering Theory. It is consistent with the first order approximation of the theory of Radiative Transfer, and
the more rigorous Multiple Scattering Theory developed by Foldy and Twersky (Ishimaru 1978).

In terms of the field strength itself, the contribution to the returned signal of this volume element is a
randomly phased sum of identically distributed scattering amplitude functions. Hence, by invoking the
usual Central Limit Theorem argument, the scattering amplitude function of a given volume element can
be represented by a zero mean complex Gaussian variable, whose mean power is given by Equation 2.1.3.
Strictly speaking, this result is valid only for a finite volume element which contains enough scatterers for
the Central Limit Theorem to be applicable; in practice, this means that we require that the integrals
involved should be adequately approximated numerically by a sum over volume elements whose size
satisfies this criteria.

A chaff cloud consists of a large number of randomly orientated resonant dipoles. The average
back scattering cross section of randomly orientated dipoles has been the subject of much research.
Detailed solutions for the boundary problem involved provide information concerning the width of the
resonance peaks as it relates to the radius of the dipoles (see for example, Bowman et al. 1969). A simple
approximation that is sufficient for our purposes, attributed to Chu (Van-Vleck et al. 1947), for the case of
isotropically random half-wave dipoles illuminated by a linearly polarised wave is

(arb) = (0.151)•X2  2.1.4

However, there does not appear to be published material available for total scattering cross section, (a d.

This is evaluated in Appendix I according to the Chu resonance formulae, and we obtain the simple result
for half-wave and full-wave isotropically random dipoles:

(t) = Ix2 (.1591,5494...);L2 2.1.5

To quantify the effects of multiple scattering, we appeal to the theory of Radiative Transfer as applied to the
case where the scatterers scatter isotropically, often known as the Milne Problem. According to various
studies of the bistatic radar cross section of chaff, the co-polarised bistatic radar cross section varies by a
factor of 4 for the case of isotropically random half-wave dipoles (Mack and Reiffen 1964), (Dedrick et al.
1978), (Peebles 1984). The solution of the Milne Problem can therefore act as a guide to the order of
magnitude involved concerning multiple scattering. It can be shown that a series solution for the average
intensity in the Milne Problem, whose terms have the physical interpretation of increasing orders of
multiple scattering, converges according to the quantity:

1 - exp(-potRc) f, PatRc + O((PytRc) 2  2.1.6

Here, Rc is some characteristic linear dimension of the cloud, such as the radius for a spherical cloud.
Therefore, we require that p (a )R , the optical depth of the cloud, to be small compared to unity for
First Order Multiple Scattering tieory to be valid. If we interpret the quantity (p (ad)) as the mean free
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path for scattering (Ishimaru 1978), then this requirement translates to saying that the mean free path for
scattering relative to the size of the cloud shall be large relative to unity. In Figure 1, the ratio of the mean
free path for scattering to the radius of a spherical cloud is plotted, where the total number of dipoles is 108.
It can be seen that for a 50 m radius cloud that this ratio is much larger than unity, implying that multiple
scattering is dominant. On the other hand, for a radius of 200 m, this ratio is much smaller than unity,
implying that the effect of higher order multiple scattering can be neglected. According to Equation 2.1.6,
multiple scattering effects in this case would be of the order of 10% of the total return.

100 ............. .......

as....... a function of the raiu of. th hffcod

.n t reort, w sl s a0 a s r cd h d l s a aay

10 ........... 5 30

the First Order Multiple Scattering Theory. The physical modc! for the scattering from a chaff cloud in this
case is to assume each volume element of the chaff cloud is illuminated according to the attenuated power
given by Equation 2.1.1, providing a mean power according to Equation 2.1.3, and has a scattering
amplitude function which is a random sample from a zero mean Gaussian distribution which is statistically
independent of the neighbouring volume elements.

2.2 Mathematical Derivation of Time Domain Return

The effect of a large number of independent scatterers upon the signal returned to a radar is often expressed
in the form of a correlation function known as the two frequency correlation function (lshimaru 1978), (Van-
Trees 1971). For a distribution of stationary scatterers the two frequency correlation function reduces to the
correlation function of a stationary random series. This type of target is known as a Range-Spread target
(Van-Trees 1971), or a Wide Sense Stationary Uncorrelated Channel (WSSUC) (Ishimaru 1978). The essence

of the simulation technique developed in this report is to obtain a sample path of this complex random
series. From this we can obtain a random sample of the ensemble of possible radar returns from the chaff
cloud. This we shall refer to as the chaff ensemble. The derivation is straightforward, following closely that
of Van-Trees. It is included here to set notation, and indicates how we shall obtain and use the random series
numerically. The reader who is concerned with mathematical rigour can verify that the following
mathematical manipulations are valid for a narrow-band radar signal reflecting from a chaff cloud which
is finite in size.

According to the physical model discussed above, each volume element scaters the incident wave once
with a known delay to the receiver. Therefore the returned signal is a sum of overlapping echoes due to

each volume element, modified by the scattering amplitude of the volume element and the relevant
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propagation factors. This has the obvious mathematical form of a convolution integral. According to the
discussion of the previous section, the scattering amplitude is a random sample of a zero mean complex
Gaussian distribution, whose mean power can be calculated. Therefore, the field strength of the returned
signal can be expressed formally by the stochastic integral in Equation 22.1.

So(t) f st(t-t) fI.(!t')dZ(t) 2.2.1

Here, si(t) is the complex envelope of the transmitted signal and so(t) is the complex envelope of the
received signal (all signals are treated according to the narrow band approximation), c is the speed of light,
and Z(t) is a zero mean complex Gaussian process with orthogonal increments satisfying Equation 2.2.2:

(IdZ(t)f2) = dt 2.2.2

The function U(R), Equation 2.2.3, is the mean power scattered from all the scatterers within dR of the given
range R:

)2 ,Gti)

E(R) = Pt x2 f -- 2(ab)exp(-2y)dA 2.2.3

(,477) A R

The ensemble average of the correlation in time of the received signal is therefore

Pt)~2)) f Sit - t. 2 -t)- C(t)dt

-. _2.2.4

= Psi(t- 2R)si(t 2 -2R)X(R)dR
C c

In particular, the ensemble average received power is the convolution integral:

1 Iso(t)1 2)= f 1ISi(t- t)1 .Z(ctjdt'

-- 2.2.5

s(t -R)l Z(R)dR

The physical interpretation of Equation 2.2.5 is that the ensemble average of the received power envelope
is the convolution of the transmitted power envelope and the scattering function U(R).

The ensemble average of the correlation in frequency of the returned signal is given Equation 2.2.6,
assuming that required change of order of integrations is valid.

(S0 (f1)So(f 2)) = SPf1)Sif 2) exp(-2i (fI - f2 ) t)-t,,(-t)dt
2 2 2.2.6

= si(fl)Sif 2)r(f 1 - f2)
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The function W(), the two frequency correlation function, represents the complex correlation function of a
stationary complex random series in the frequency domain, which by construction is a zero mean complex
Gaussian random series. We therefore represent the chaff cloud mathematically as a zero mean complex
Gaussian random series in the frequency domain, whose spectral density is (c/2)Z(ct/2). Its spectral
representation is given by Equation 2.2.7.

SC(f) J exp(-2xift')J Z(St')dZ(t') 2.2.7

We then define the Fourier transform of received signal by Equation 2.2.8, and obtain the received signa!
by Equation 2.2.9.

So(f) = Si(f)Sy(f) 2.2.8

So(t) = f exp(2nift)S,(f)df 2.2.9

It can be verified that the received signal defined in this way satisfies Equations 2.2.4 and 2.2.6. The problem
of obtaining a random sample of the time domain return from a chaff cloud is therefore reduced to
obtaining a random sample of SJ(f), Equation 2.2.7, and then evaluating the correlation integral via
Equations 2.2.8 and 2.2.9.

2.3 Numerical Characteristics of Time Domain Return

We now examine the numerical implementation of the above calculations. We use the Discrete Fourier
Transform (DFT) to numerically approximate the required Fourier Transformations, and so we must choose
appropriate values for the total band width 2F, and the total time 2T, taking into account that the total
number of points for the transform, N, is given by N=(2T)(2F). The DFT is implemented by a Fast Fourier
Transform (FFT), so we also require that N be a power of two. The aim of the discussion is to select
appropnate values for 2F and 2T such that the numerical calculations are reasonably faithful to the physical
picture outlined above.

Although the discussion of Section 2.1 indicates that the contributions of the higher order scattering are
about 10% relative to the approximate scattering theory we are using here, there is a need to calculate this
approximate theory to a higher level of precision. We shall be performing many non-linear transformations
upon the simulated signal, and we do not wish to allow spurious harmonics due to insufficient
band limiting, or other defects in our numerical calculations, to interfere with the observations we wish to
make. We are not justified in using a level of precision beyond 10.4 though, as at this point we may be going
beyond the validity of the narrow-band approximation, upon which all of the above analysis depends. We
therefore choose 2T and 2F so that the numerical errors in our calculations are about 10'4.

We use a sampling technique for a stationary correlated Gaussian series of known spectrum that is
sometimes used in radar signal simulation (Mitchell 1976). The idea is to use a discrete approximation for
the spectral representation of the random series, Equation 23.1.

N-i

Sc(n8f) e (ex(-2x!!T-) (m~t)8 (N(0, 8t)+iN(0,8t)) 2.3.1
M-0 N( 2 2

N-1

r,(n 8 f) exp(-2xi--) ( Z( m8&t)) 8 t 2.3.2

m-0

UNCLASSIFIED 5



ERL-0634-RR UNCLASSIFIED

Here, N(ab) represents a randcmly sampled real Gaussian variable, with mean a and variance b. It is easily
sl .vn this discrete form of the spectral representation of S,(f) provides a sequence of numbers whose
correlation function, rd of Equation 2.3.2, is the DFT of the sampled spectral density. We position the cloud
so that it is fully contained within the interval (0,T), so that the Forler series in Equation 2.3.2 converges
in the sense that extra terms contain no energy. However, the discrete correlation function rd is periodic
with period 2T. Indeed, it is easy to show that the Fourier series is that of the infinite sum of F(f) spaced 2T
apart (an aliasing effect). To ensure that this effect is negligible to a level of e, F must be sufficiently large
such that (f)<kE for all f<F. In Appendix II it is shown tI' A for a distant spherical cloud where multiple
incoherent scattering can be ignored 1(R) is approximately

-(R + z) - P0 P(•)(R2-z z) forIzj <Rc 2.3.3

In this approximation, the two frequency correlation function is given by Equation 2.3.4, where jj(x) is the
Spherical Bessel function of order 1.

-(f) = ISC(012 P whereg = 27rf _ 2.3.4

For g large relative to unity,

3 3 3 ( c 21
E- -- cos - 2-42,• 2.5

P2 i .2 2R12)

Therefore, we choose F by Equation 2.3.5, on the understanding that the resulting choice for F renders L
large relative to unity.

F = - 2.3.6

If, for example, Rc is 200 m and e is 10 4 , then F is 20.7 MHz and the time step that this implies is 24.2 ns, or
3.6 m in radar length. From the point of view of ensuring that each volume element in the discrete
approximation contains a reasonable number of scatterers, so that the Central Limit Theorem is valid, this
is a reasonabie value.

We now consider the evaluation of the correlation integral in Equation 2.2.10. For a pulsed radar, the
spectral density of the transmitted signal, I S1 (f) 12, is given by Equation 2.3.7.

jSi(f)i2 = 2Pt 2 sinnf2 2P2 2
=fT (f•i2r)2  2.3.7

The radar will employ a matched filter, which will further improve the band limiting behaviour of this
signal We shall use the single pole approximation, Equation 2.3.8, in our calculation (Skolnik 1981). The
filter has been normalised to preserve the DC levels.

S(f)= (1 - 2nifc)-1 2.3.8

In this case, Equation 2.2.8 becomes:

So(f) = Sc(f)O(Sm(f) 2.3.9

The ratio of the ensemble average of the spectral density of the received signal for large frequency values
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to its value at the origin is:

(ISo(f)l 2 ) sinxf-r 2 1 4

=0 (_ _ < ,, u 2.3.10
((S(0)2)71- - 2xiftl2 < 2xftý)a4

To maintain the desired level of band limiting on the received signal power to the level of precision e, we
should choose the total band width F by

111
F = 2.3.11

If we use a pulse width of 0.1 ps, and set e to 10-4, then the band width given by this formula is 22.5 MHz
and the time step implied by this choice is 22.2 ns, or 3.4 m in radar length. This is about the same value as
that required for the sampling of the random series representing the cloud.

In our simulations we shall need to include the effect of wide band noise passing through the matched filter.
When examining the action of the range discriminant, or the output of a logarithmic detector, this will
prevent unphysical divisions by zero, or similar numerical problems occurring, by providing a physically
plausible noise floor. We shall refer to a sample of this signal as a sample from the thermal ensemble. This
signal will change on a pulse by pulse basis, unlike the chaff signal which will evolve over a period of a
large number of pulses. We can obtain a random sample of this signal in a similar fashion as that used for
the chaff cloud. The average of the spectral density over the thermal ensemble of this signal is

2 kTs I kT,
=S(f) - <= - -X, 2.3.1211_-2nif.-c2 4•2(,)

Here, k is Boltzmann's constant, and T, is the system temperature of the radar receiver. If we select F
according to Equation 2.3.11, then Equation 2.3.12 becomes

JS(F')j2-, • 2.3.13

IS(0)1
2  2

If E is 10-4, then the band limiting according to Equation 2.3.13 will be 5 10-3. In general, the signal power of
the wide band noise through the matched filter will be small compared to the return from the chaff cloud,
allowing us to tolerate this reduced level of accuracy.

Having chosen an appropriate value for the total band width 2F, we now examine the selection of the total
time interval 2T. The interval (0,T) should contain the entire return from the chaff cloud. It is therefore set
by the diameter of the sphere in radar time, 2(2R,/c), plus some multiple of the pulse width r. Since the rate
of decay of the output of the matched filter used here is exp(-(t-t)/tc), we choose this multiple oft to be 12,
so that the chaff return will be fully contained within a time interval of T to a level of 10. This also reduces
the error introduced by aliasing of the matched filtered signal to about 104.

In general, we shall pick the larger of the two values provided by Equations 2.3.5 and 2.3.11 for F, using the
value of T discussed above. To obtain a power of two for N, we increase F as required. In the simulations
carried out in this report, we use a set of conditions which are typical of those encountered by an ASM. To
prevent repetition, we state the conditions here. The radar is a pulsed radar with a carrier frequency of
9.45 GHz, with 40 kW of peak power, a one way antenna gain of 30db, and with a system temperature of
1000 K. Typically, the PRF will be of the order of kHz. We use a spherical cloud of radius 200 m, with
108 isotropically aligned dipoles, and its centre is at a range of 10 kmn. With this geometry, the cloud will be
fully contained within the 3dB beam width of the antenna pattern. The pulse width of the radar will be
either 0.1 ps or 0.5 ps, which implies that we should use 512 and 1024 points respectively for the FFT.
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3 SIMULATIONS CONCERNING THE PERCEIVED RCS OF A CHAFF CLOUD

The essential reason for developing the simulation technique of this report is to obtain direct data
concerning the effect of this type of return upon the range discriminant of a range tracking radar. In this
section we discuss a by-product of this analysis, the perceived RCS of a chaff cloud. We treat the average
value of the power envelope of the return analytically. From this, we can also obtain analytical results for
the RCS profile for a square law detector, linear and logarithmic detectors, and for a first order AGC loop
driven by a linear detector. By comparing the average over the chaff ensemble from our simulations to the
analyticai results, we check the validity of the simulations.

3.1 RCS of a Chaff Cloud, as Perceived by a Square Law Detector

One method of assessing the RCS of the chaff cloud is to use the integrated cross section, which is simply
the total power returned by the cloud relative to the power returned by a point target of known radar cross
section held at the same range. This is the RCS that would be appropriate to use for a continuous wave
radar (CW), and is given by Equation 3.1.1.

ý = foYP(R)dR 3.1.1

Here, P0 is the power returned by a steady point target held at the same range. Explicit expressions for the
CW RCS for a distant spherical cloud are derived in Appendix II. In the limit of small optical depth these
expressions reduce to the sum of the power returned from each scatterer. For example, a cloud of
10 iso tropically randomly orientated dipoles and a carrier frequency of 9.45 GHz the CW RCS is 14740 m2.

For a pulsed radar, the notion of CW RCS applies only where the pulse length is large relative to the
dimensions of the chaff cloud. Many ASMs use a pulse width of the order of 0.1 p±s (radar pulse length of
15 m). Therefore, the concept of CW RCS is not an appropriate measure of the signal power returned by the
chaff cloud for these ASMs; that is, we must take into account the dimensions of the chaff cloud. This is
often taken into account by the Radar Resolution Method where the power seen by the radar is
approximated by the sum of the power returned by the scatterers contained in the volume element
resolution cell of the radar system (see for example, Schleher 1986). This is a crude version of the power
envelope of the chaff return as found by the convolution integral of Equation 2.2.5. In this report we shall
relate the power envelope of the return as calculated by the correlation integral to that obtained from
simulations, according to various detectors. For a point target, the RCS can be judged by the peak output
of the matched filter. Therefore, the power envelope of the cloud in our simulations will be calibrated
against the peak value of the power envelope of a point target held at the same range. In this sense we can
obtain a RCS profile of the chaff cloud which could be verified experimentally.

The signal presented to the radar detector is a mixture of the chaff return, and the filtered thermal noise.
The thermal noise varies on a pulse by pulse basis, but the chaff return evolves on a much slower time scale,
consisting of a large number of pulses. In principle, we should average over the thermal ensemble before
obtaining the average over the chaff ensemble. However, in the calculations performed in this section we
note that the chaff signal power completely dominates over the thermal noise power in the central portion
of the chaff return, which is what we are interested in here. Hence, for the purposes of obtaining estimates
of the chaff signal power as perceived by the detector in question, we can ignore the distinction between
the time scales of these two signals.

In Figure 2, a typical simulation of the output of a matched filter according to a square law detector is
shown; the smooth curve is the ensemble average from Equation 2.2.5. In this example we have used a
pulse width is 0.1 ps. The vertical scale has been scaled so that unity is the peak output from a point target
of unit radar cross section. Hence we may interpret the vei tical scale as the RCS profile as discussed above.
Clearly, a given sample of the time domain signal from the cloud, as calculated by the technique developed
in this report, consists of many peaks and in no way resembles the ensemble average signal calculated by
the convolution integral of Equation 2.2.5. Figure 3 shows the average taken over 1000 independent
samples of the same return, and it is converging to the convolution integral as expected (the sample shown
in Figure 2 was one of the samples used in calculating this average). The highest value of the RCS profile
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according to the convolution integral (see Figure 3) is about 770 m 2, whereas the CW RCS of this cloud is
14740 m-, representing a loss of 12.8dB relative to the CW RCS of the cloud.

We repeat this analysis for a radar whose pulse width is 0.5 ps.We would expect that for these dimensions
that the perceived RCS profile would be larger, as the pulse length relative to the size of the cloud is larger.
Indeed, this is the case. Figure 4 shows a random sample of the return from the cloud superimposed upon
the result calculated from the convolution integral. Again, a single random sample of the return is
composed of many peaks, and does not resemble the smooth result available from the convolution integral.
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Figure 2 The RCS profile of the chaff cloud for the square law detector, using the 0.1 ps radar.
The smooth curve is the ensemble average, and the spiky curve is a random sample.
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Figure 5 is the average result of 1000 independent random samples superimposed upon the convolution
result (the smooth curve). The highest value of the RCS profile in this case is 3400 m2 , a loss of 6.4dB relative
to the CW RCS of the cloud.

In conclusion, the average RCS profile obtained from simulations agrees well with the analytical result
obtained from the convolution integral. Individual random samples of the RCS profile in no way resemble
the shape of the RCS profile obtained from the convolution integral. The RCS as perceived by the radars
considered here reflects the size of the pulse length relative to the dimensions of the cloud, as we would
expect.
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Figure 4 The RCS profile of the chaff cloud for the square law detector, using the 0.5 lis radar.
The smooth curve is the ensemble average, and the spiky curve is a random sample.
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Figure 5 The average over 1000 samples for the square law detector of the received [ignaJ,
using the 0.5 pts radar. The maximum ensemble average RCS obtained is 3400 m .
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3.2 RCS of a Chaff Cloud, as Perceived by a Linear and Logarithmic Detector

Since the chaff return is a zero mean complex Gaussian process, we can use the ensemble average power to
obtain the average over the chaff ensemble for a linear envelope detector, Equation 3.2.1, and a logarithmic
detector, Equation 3.2.2 (y--057721566... is Euler's constant) (see for example, Deutsch 1962).
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Figure 6 The average over 1000 samples for the linear detector of the received si nal
using the 0.1 ps radar. The maximum ensemble average RCS obtained is 580 m.
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qISop)p X 21s(0 3.2.1

1 1 1 2
(loglSo(t)l) = (- Y+ log2) + jlog(j)so(t)j2 3.2.2

As these detectors are memoryless transformations of the signal, the ragged nature of a single random
sample of the cloud's return can be inferred from the examples given above. We shall only display a
comparison of the average obtained from the simulations to the values obtained from the analytical results.
Figure 6 shows the average of 1000 independent random samples obtained from simulations superimposed
upon analytical result (smooth curve) for a linear detector, while Figure 7 gives the results obtained for a
logarithmic detector. Both of these sets of results are for a pulse width of 0.1 pis, and the vertical scale in each
case has been scaled so that unity corresponds to the response obtained from a steady point target with unit
RCS held at the same range. In both cases the agreement between the analytical result and the simulations
is excellent.

From these profiles we may obtain the average RCS as perceived by these systems relative to a steady point
target of known RCS and range. For the linear detector, we have 580 mr, and for the logarithmic detector
400 m2. These values are a bit smaller than that obtained from the square law detector (770 m2),
representing a loss of 14.0dB and 15.7dB respectively relative to the CW RCS of the cloud. For the
simulations for a 0.5 ps pulse width, the agreement between the simulations and the analytical result is of
the same quality. The maximum average RCS achieved for the linear detector was 2700 m2, and for the
logarithmic detector was 1600 m2, representing a loss of 7.4dB and 9.6dB respectively relative to the
CW RCS of the cloud.

In view of the fluctuating nature of the return from a chaff cloud, these average values represent only
typical values of the strongest part of the clouds RCS profile. Nevertheless, the losses are of the order of
15dB relative to the CW RCS value of 14740 m2 for the 0.1 pIs pulse width, and 8dB for the 0.5 ps
pulse width. These values are consistent with the relative size of the pulse length to the dimensions of the
cloud.

3.3 RCS of a Chaff Cloud, as Perceived by an AGC Loop

Pulsed radar systems often employ an AGC loop driven by a linear envelope detector. This class of circuit
has been analysed in the literature, and we shall consider here a simplified model for this circuit due to
Ohlson (1974). With reference to the schematic diagram in Figure 8 the following set of formulae describe
the operation of the First Order AGC loop.

INPUT OUTPUT
SWt I I.F. GAIN LINEAR yWt

• Geav DETECTOR "(t) I.t) GIN

KJ
BIAS

Figure 8 First order AGC loop block diagram.
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v(t) = C + log (h @ 1 sl (t)) 3.3.1

y(t) bh Is(t) 3.3.2

C 1 log G 3.3.3

t

h IsI(t) = exp(- (t- 4) /P)s(4){d 3.3.4

{ K-b 3.3.5

Here, s(t) is the signal in complex envelope form, y(t) is the output, v(t) is the control voltage, G and a define
the exponential gain characteristic curve of the amplifier, K is the gain of the integrating element, b is the
bias voltage, and 0 is the AGC time constant.

In practice, it is the control voltage v(t) which is accessible to the experimentalist, and from which the
perceived RCS of the target is deduced. This in turn is a logarithmic transformation of the convolution
integral of Equation 3.3.4. Thus, the key quantity to evaluate is the convolution integral, which we shall
adopt as our measure of the signal. However, we are forced to consider the effect of thermal noise in
evaluating this convolution integral, since it appears in the denominator of Equation 3.3.2. Due to the
integrating action of the AGC circuit, we should expect some averaging with respect to the thermal
ensemble for a given sample of the chaff ensemble in the evaluation of this convolution integral.

We shall examine this point in more detail. The signal is pulsed, and we shall assume that the PRI is large
relative to the AGC time constant 15, but small relative to the correlation time of the chaff return. Also, we
shall assume that the signal provided to the AGC loop is gated and that the gate width is small in
comparison to the AGC time constant 13. Under these conditions, the convolution integral degenerates into
a discrete First Order filter, driven by the integral of the linearly detected sum of the chaff return and the
thermal noise over the selection gate, Equation 3.3.6. Here, Tp=l /PRF is the pulse repetition time.

n
h 0 sl(t) - X= E exp(- (n -m) (T p/5))Xm

m . - 3.3.6

X = f J s(t)j dt

m'th gate

Considering that the AGC time constant 13 is considerably shorter than the time scale describing the time
evolution of the chaff return, we see that the convolution integral will be well approximated by its mean
value over the thermal ensemble while holding the chaff return constant, Equation 3.3.7. The Rice function
used in Equation 3.3.7 is the well known mean value for the Rician probability distribution for of a steady
signal of amplitude A corrupted by complex Gaussian noise with a noise power of No (Rice 1944).

X = 1 f Rice(iso(t)I, No/(2'))dt

e 1 A) gat 3.3.7

Rice(A, N O) = /2,• 0.-E - F,(- ;1 ; • -

'O' - 2 1 2' 2N 0

This integral can be written as a correlation integral by using a gate function g(t), Equation 3.3.8, which
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allows us to examine the control voltage as we place the selection gate in different positions relative to the

cloud return. Here, g(t) is unity over the width of the selection gate, and zero elsewhere. For our simulated
chaff return, this integral can be implemented numerically by a FFT.

X = X(tg) f e-)g(t - tg)Rice(Iso(t)I, No/( 2 :))dt 3.3.8
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Figure 9 The RCS profile of the chaff cloud for the AGC system, using the 0.1 •± radar.
The smooth curve is the ensemble average, and the spiky curve is a random sample.
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Figure 10 The average over c0haf samples for the AGC system of the received signal,
using the 0.1 i radar. The maximum ensemble average RCS obtained is 1400 m-.
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In Figure 9, the function X(tg) derived form the return displayed in Figure 2 is shown superimposed upon
the analytical result of Equation 3.3.8; the vertical scale has been normalised by the peak output of a point
target of unit RCS at the same range, under high signal to noise conditions. The AGC selection gate is 0.2 g.s,
or 2.0 pulse widths. The overall appearance of the sampled function is smoother than that of Figurm 2.
Figure 10 shows an average over the same 1000 samples used to generate Figure 3, superimposed upon the
analytical result. The agreement is excellent, and the maximum value of the profile corresponds to a RCS
of 1400 m 2 , representing a loss of 10.2dB relative to the CW RCS of the cloud.
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Figure 11 The RCS profile of the chaff cloud for the AGC system, using the 0.5 jis radar.
The small curve is the ensemble average, and the large curve is a random sample.
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Figure 11 shows a random sample of the function X(tg) for a 0.5 is pulse width, superimposed upon the
analytical result. The AGC selection gate is 1.0 p.s, or 2.0 pulse widths. Figure 12 is the average of 1000
independent samples superimposed upon the analytical result. The agreement is also excellent. The
maximum value of this profile corresponds to a RCS of 6400 m 2, representing a loss of 3.6dB relative to the
CW RCS of the cloud.

The larger values of the RCS as judged by the profile given here relative to those obtained for the square
law, linear or log detectors probably stem from the width of the AGC selection gate (two pulse widths).
Indeed, we find that the average values obtained here for a system employing AGC is approximately twice
that obtained from the square law detector, reflecting the width of the AGC selection gate.
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4 SIMULATIONS CONCERNING THE RANGE DISCRIMINANT
If we are to determine whether a given radar is able to track a chaff cloud in range, then the effect of the
chaff return upon the range tracking loop needs to be examined. Generally, we cannot obtain analytical
results due to the non-linear nature of the range discriminant, and so we must rely upon simulations to
obtain the statistical characteristics of the range discriminant. The range discriminant which we examine
here is a split gate discriminant, which is fed into a first order filter to smooth out the effects of thermal
noise. Thus, we must carefully distinguish between averaging over the thermal ensemble, as performed by
the low-pass filter described here, and averaging over the chaff ensemble which we perform to obtain the
statistical characteristics of the chaff cloud as perceived by the range discriminant. In this way we obtain
the average value of the range discriminant, its variance, and the correlation coefficient between the early
and late gates of the range discriminant by a straightforward Monte-Carlo sampling analysis.

4.1 Range Discriminant with an AGC Loop

A range tracking loop is typically a feedback mechanism, with an error signal generated by some form of
range discriminant. Often, an early-late gate system is employed, where the signal is passed through two
gates, the early and late gates, integrated, and their difference found. If the signal has been normalised via
the action of the AGC loop, an error signal which is largely independent of the strength of the signal is
generated. Consistent with our previous notation, we define the functions e(t), l(t) to be unity within the
range tracking selection gates, and zero elsewhere. The range discriminant, apart from some arbitrary
multiplicative constant, is then given by Equation 4.1.1. In our simulation program, these correlation
integrals are implemented via a FFT.

f e(t - t8)1s0(t)I dt - fl(t - t8)ls,(t)Idt

r(t ) = 4.1.1
g X(t 9)

Here, X(tg) is taken from Equation 3.3.8, and is already averaged over the thermal ensemble as discussed
in the previous section. This correlation integral provides us with a single sample of the chaff ensemble
corrupted by a single sample from the thermal ensemble. The division by X(t ) in Equation 4.1.1 prevents
the development of analytical expressions for the average value of the range discriminant.

This signal is then integrated by a low-pass filter, whose main purpose is to smooth out the fluctuations due
to the thermal noise. The sole reason for including the effect of thermal noise at all in these simulations is
to prevent numerical problems that would occur if it were removed. Therefore, the precise form of the
filtering action discussed here is not critical for our analysis. The main requirements we place upon the
filtering action are that it must be physically possible, and not disturb the operation of the radar system
unduly. Hence, we shall model this low-pass filter by a first order discrete filter, Equation 4.1.2, where rm(tg)
is the rnth sample with respect to the thermal ensemble of the range discriminant of Equation 4.1.1, for a
given sample from the chaff ensemble.

Rn + 1(t9) exp(-1/0,)Rn(t 9) + (1 - exp(-1 / Pd) rn(tg)

n 4.1.2
(1-exp(-1/r)) • exp(-(n-m)/P3r)r (t )

fl1 m --.

In selecting a suitable value for D,, we do not wish it to be too large, or else the response time of the filtered
range discriminant will be too sluggish. However, we would like it to be sufficiently large so as to filter out
the pulse to pulse variations due to the thermal noise. If we hold the chaff return constant over the period
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of operation of the filter, we find that the variance of the filtered output is:

)]= (1-ep-/d'V [r(t )A
d) 4.1.3
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For a pulsed radar with a PRF of the order of kHz, we see that choosing 03, to be 10 ensures that band width
of the information provided to the remainder of the tracking loop is still well in excess of 10 Hz, and
provides a reduction by a factor of 20 in the variance of the range discriminant. This is the value we choose
for our simulations. We must also truncate the operation of the filter. If we use only N terms in the
recurrence relation, then the variance given in Equation 4.1.3 is modified by a factor of (Q-exp(-2N/Ord).
Therefore, for numerical calculations we shall use N=10, implying that this factor is 0.865. Since the
principal purpose for including thermal noise in our calculations at all is to provide numerical stability in
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Figutre 15 The standard deviation of the range discriminant for
the AGC system, using a 0.1 ,.is pulse width.
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Figure 16 The correlation coefficient of the early and late gates for
the AGC system, using a 0.1 ps pulse width.
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a physically plausible way, this will be sufficient for our purposes.

For a 0.1 lis pulsed radar with selection gates of 0.08 ps width, a typical sample of range discriminant is
shown in Figure 13; the average response over 1000 samples in Figure 14, and the standard deviation in
Figure 15.

The average value has the behaviour that we would expect, in that it is close to zero outside the cloud and
in the middle of the cloud, but has large peaks of the appropriate sign at the edges of the cloud. However,
this structure which is clearly visible in Figure 14 is not at all apparent in the random sample of this process
shown in Figure 13. The variance of the range discrirninant shown in Figure 15 shows that within the cloud
the standard deviation of the range discriminant is uniform, with a value of 0.2; the small fluctuations
observed in this figure can be attributed to sampling fluctuations. On the trailing edge of there is a dip
followed by a small rise, before the standard deviation settles back to the thermal noise value.

Another set of statistics that we can use to examine the behaviour of the range discriminant is the
correlation of the outputs of the early and late gates; in particular, the correlation coefficient of these
outputs. Again, this cannot be obtained analytically, and so we must rely upon simulations. We must be
careful in analysing the statistical data to obtain the correlation coefficien,, or some measure of the
correlation of the early and late gates. It is well known that the Pearson Correlation Coefficient is useful
only for data which is 'close' to the Gaussian form that it assumes (Press et al., 1986). We should therefore
compare the results from this test to that from some of the non-parametric test such as the Spearman Rank-
Order test, or the Kendall's Tau test. However, these non-parametric tests rely upon ordering the data, or
some operation that requires that all of the data points to be held in memory, whereas the Pearson
Correlation Coefficient can be obtained from a running sum, just as the sample mean and sample variance
are obtained. From a programming point of view, we simply run out of computer memory. Hence, we shall
use the Pearson Correlation coefficient to obtain data for each of the computed points, as was done for the
sample mean and sample variance discussed elsewhere. We then identify some typical points and some
unusual points, and examine their full statistics in more detail separately.

A graph of the Pearson Correlation Coefficient of the early and late gates can be found in Figure 16. Within
the return from of the cloud we find that the correlation coefficient of the early and late gates is
approximately -0.8, indicating a high degree of anti-correlation between the gates. Again, there appears to
be a special structure associated with the trailing edge of the return from the cloud. Therefore, we shall
select four points to examine in more detail; the leading and trailing edges of the cloud (0.55 ps and 3.30 ps),
the middle of the cloud (2.00 ps), and from the thermal noise (6.00 ps). A comparison of the Pearson
Correlation Coefficient, Spearman Correlation Coefficient, and Kendall's Tau is contained in Table 1. From
this table it is clear that all three statistics are in reasonable agreement; hence the plot of the Pearson
Correlation Coefficient in Figure 16 is likely to be reliable.

Pearson Spearman Kendall's
Correlation Rank-Order Tau Test
Coefficient Test

Point 1 (0.55 ps) -0.278 -0.282 -0.189

Point 2 (3.30 p) +0.344 +0.438 +0.322

Point 3 (2.00 ps) -0.862 -0.859 -0.676

Point 4 (6.00 ps) +0.344 +0.j37 +0.225

Table 1 Comparison of Correlation Coefficient Statistics.
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We can gain a clearer picture of the nature of the two dimensional statistical distribution of the early and
late gates by examining the their scatter plots. The scatter plots of each of these samples are shown in
Figures 17 through to 20 respectively. From the scatter plot for the leading edge of the chaff return,
Figure 17, it can be seen that the distribution has a long tail due to the influence of the chaff cloud; the early
gate is in the cloud, whereas the late gate is in the thermal noise. Since the early gate has a long tail, it is
clear that the distribution between the early and late gates is not a two dimensional Gaussian distribution.
The scatter plot of the return from the trailing edge of the chaff cloud demonstrates that the variance is
small, and that a positive correlation between the gates does exist. The best behaved distribution is that
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Figure 17 The scatter plot for the leading edge of the chaff return, for
the AG C system, using a 0.1 gs pulse width.
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Figure 17 The scatter plot for the trailing edge of the chaff return, for
the AGC system, using a 0.1 ±s pulse width.
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from within the chaff cloud, Figure 19. Here, a strong anti-correlation in this distribution is immediately
apparent to the eye. This distribution could probably pass for a two dimensional Gaussian distribution. The
distribution due to the thermal noise, Figure 20, is also well behaved. Since this return is derived by an
averaging process, due to the action of the low-pass filter, we would expect that this distribution would be
close to a Gaussian distribution.

In summary the distributions for the early and late gates for the return due to thermal noise, and the chaff
return are easily understood and characterised. Indeed, it is remarkable that the statistical characteristics of
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Figure 19 The scatter plot for a point from within the chaff return, for
the AGC system, using a 0.1 gs pulse width.
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Figure 20 The scatter plot due to thermal noise alone, for
the AGC system, using a 0.1 jis pulse width.
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the chaff cloud as processed by the range discriminant from within the chaff return are so uniform. It is also
clear that the leading and trailing edges of the chaff return have their own special structure and that the
transition between the signal from within the chaff cloud and the thermal noise is not smooth.

The above analysis is now repeated for the 0.5 jps pulse width. A sample of the range discriminant is given
in Figure 21, the average response in Figure 22, the standard deviation of the range discriminant in
Figure 23, and the Correlation coefficient in Figure 24. The mean value of the range discriminant has the
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Figure 21 A random sample of the range discriminant for
the AGC system, using a 0.5 pis pulse width.
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sort of structure one would expect, except for the long flat negative portion on the trailing edge of the chaff
return. This is most likely to be associated with the decay of the output of the matched filter we have used
in these calculations. Unlike the previous set of simulations, the structure of the mean value of the range
discriminant is visible in the random sample of Figure 21.

On comparing Figure 23 and Figure 24 to their counterparts in the previous simulations (Figures 15 and 16
respectively), we can see that a similar structure occurs. The central portion of the return has the same
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Figure 23 The standard deviation of the range discriminant for
the AGC system, using a 0.5 lis pulse width.
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Figure 24 The correlation coefficient of the early and late gates for
the AGC system, using a 0.3 ps pulse width.
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standard deviation and correlation coefficient as that of the previous simulations. However, the observed
statistical structure of the leading edge and trailing edges of the cloud, although similar in shape, are more
pronounced. This can be explained by the larger pulse length relative to the cloud radius.

To verify the validity of the Pearson Correlation Coefficient used here, a point on the leading edge of the
return (2.55 pis), the trailing edge of the cloud (5.87 pis), the middle (4.00 pts), and thermal noise (10.00 ils)
were selected, and then examined in mor-! detail. The Pearson Correlation Coefficient, Spearman Rank
Correlation Coefficient and the Kendall Tau test were applied, and the agreement between all three tests
was similar to that found in the previous set of simulations. The scatter plots for each of these four selected
points were similar in appearance to their counterparts in the previous set of simulations, and are therefore
omitted.

In summary, the above statistical analysis of the simulation results indicates that the statistical behaviour
of the range discriminant operating on the signal return from within the chaff cloud is remarkably uniform.
Here, the variance is 0.2, and the correlation coefficient is -0.8, and is easily distinguished from the thermal
noise, which due to the filtering action of the low-pass filter has a smaller standard deviation and has a
slight positive correlation coefficient. However, the leading edges and trailing edges of the chaff return that
are have their own special structure. This structure can be explained by the mixture of the thermal noise
signal and the chaff return that occurs at the edges; for example, one gate is within the return from the
cloud, while the other is dominated by the thermal noise.

4.2 Range Discriminant with a Logarithmic Detector

If the detector is a logarithmic detector, or some reasonable approximation to a logarithmic detector, then
the signal power level affects the output by an additive constant. Hence, the slope of a range discriminant
based upon the difference between the early and late gates is unaffected by the signal power level,
eliminating the need to normalise the difference between the early and late gates. Therefore, apart from an
arbitrary multiplicative constant, the range discriminant for a logarithmic detector system can be
implemented by Equation 4.2.1.

r(tg) = f e(t- t )logISo(t)Wdt- f l(t- tg)logIso(t)ldt 4.2.1

Here, e(t ) and l(tg) are the early and late gate functions used earlier in the discussion of the discriminant
for AGC system. The correlation integrals used here are implemented numerically by a FIFT in our
simulation program. We normalise these integrals by dividing by twice the pulse width, so that we can
sensibly compare the features of the range discriminant with that of the AGC system, and we choose the
width of each of these gates to be 0.8 of a pulse width. This allows a direct comparison of the results of this
section to that of the AGC system discussed in the previous section.

In principle, we can obtain analytical results for the mean value range discriminant, using the result of
Equation 3.2.2. However, due to the effects of thermal noise, which was neglected in this derivation, the
results would only be valid where the signal strength from the chaff cloud is large compared to the thermal
noise. From the simulations concerning the range discriminant for the AGC system, we see that many of
the interesting phenomena are associated with the leading and trailing edges of the return from the chaff
cloud, where this assumption is not valid. Furthermore, the analytical problems associated with obtaining
the standard deviation and the correlation coefficient prevent useful results being obtained. Hence, to
obtain the statistical characteristics of the range discriminant for the logarithmic detector, Monte-Carlo
analysis is required.

This range discriminant can be implemented in the radar by passing the signal from each of the early and
late gates into a simple low-pass filter. This filter will perform an averaging action over the thermal
ensemble, in exactly the same manner as was discussed previously for the AGC system. Since the same sort
of physical considerations apply, we use the same filter system driven by the correlation integrals of
Equation 4.2.1 to model the range discriminant.
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For a 0.1 ps pulsed radar a typical range discriminant is shown in Figure 25; the average response over 1000
samples is shown in Figure 26, and the standard deviation iri Figure 27. As with the simulations of the AGC
system discussed in the previous section, an individual random sample of the range discriminant does not
display the structure apparent in its average response. Also, the standard deviation of the range
discriminant operating on the chaff return from within the cloud is uniform, and the trailing edge of the
cloud is marked by a dramatic drop in the standard deviation of the range discrimmnant. Indeed, the overall
behaviour of the average value of range discriminant and its standard deviation is very similar to that
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Figure 25 A random sample of the range discriminant for
the Log system, using a 0.1 ps pulse width.
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Figure 26 The average over 1000 samples of the range discriminant for
the Log system, using a 0.1 ps pulse width.
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found for the AGC system (compare with Figure 14 and Figure 15).

The Pearson Correlation coefficient of the signal in the early and late gates is given in Figure 28. The thermal
noise is characterised by a correlation coefficient of about +03, and the return from the middle of the cloud
is correlated somewhat more strongly, in as far as we can infer this difference given the sampling
fluctuations. The leading edge of the cloud is marked by narrow dip in the correlation of the cloud: one gate
within the cloud with the other gate outside the cloud. However, the trailing edge is marked by a broad,
strong positive correlation. Overall, the structure of the correlation coefficient here is totally different from
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that for the AGC system (compare Figure 28 with Figure 16).

As before, we select some points to examine more closely, and perform other statistical tests for correlation
coefficient (we choose the same four points as indicated in Section 4.1 for the 0.1 gs simulation); the
agreement between teach of these three tests was found to be quite good.

The scatter plot for the leading and trailing edges of the cloud can be found in Figure 29 and Figure 30
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Figure 29 The scatter plot for the leading edge of the chaff return, for
the Log system, using a 0.1 lis pulse width.
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Figure 30 The scatter plot for the trailing edge of the chaff return, for
the Log system, using a 0.1 as pulse width.
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respectively. The scatter plot for the leading edge of the cloud shows no discernable correlation to the eye,
and its appearance indicates it could be modelled by a two dimensional Gaussian distribution. The same
cannot be said for the distribution for the trailing edge of the cloud. The large positive correlation in this
distribution is immediately apparent to the eye, and the skewed character of the distribution indicates that
this distribution is not Gaussian.

The scatter plots for the return from within the cloud, and that due to thermal noise are given in Figures 31
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Figure 31 The scatter plot for the within the chaff return, for
the Log system, using a 0.1 gs pulse width.
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Figure 32 The scatter plot due to thermal noise alone, for
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and 32 respectively. In each case a small positive correlation can be detected by eye. The distribution of the
return from within the cloud, Figure 31, is skewed, indicating that it is not a Gaussian distribution. The
averaging effect over the thermal noise is apparent in the distribution in Figure 32. The variance is smaller,
and the shape of this distribution is more nearly elliptical than that of Figure 31.

As we would expect, the nature of the distributions studied here are different from those associated with
the AGC system. Nevertheless, the mean and standard deviation of these distributions are similar to their
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Figure 33 A random sample of the range discriminant for
the Log system, using a 0.5 p~s pulse width.
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counterparts in the AGC system. The differences lie in the correlation properties between the gates.

We repeat the analysis for the 0.5 ps pulse width radar. A single random sample of the range discriminant
is given in Figure 33; the average response over 1000 samples in Figure 34, and the standard deviation in
Figure 35.

As far as the mean and standard deviation of the range discriminant are concerned, the results given here
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Figure 35 The standard deviation of the range discriminant for
the Log system, using a 0.5 ps pulse width.
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are similar to those obtained for the AGC system with 0.5 ps pulse width (compare Figures 33,34 and 35 to
Figures 21, 22 and 23 respectively). The structure seen in the average response (Figure 34) is dearly visible
in the random sample (Figure 33). The standard deviation of the range discriminant operating on the return
from within the cloud is about 0.2, and the trailing edge of the cloud is marked by a broad dip (Figure 35).

In examining the correlation properties of the early and late gates, Figure 36, we find that there are major
differences when compared to the 0.5 p pulse width AGC system (compare with Figure 24). The leading
edge of the cloud is marked by a narrow dip, and the trailing edge displays a large, positive correlation.
The scatter plots derived from points on the leading and trailing edge of the cloud are similar to those
obtained for the simulation of the 0.1 ps pulse width radar, and are therefore omitted.

In summary, we find that for both of the pulse widths considered in this report, the relationship between
the results for the log system range discriminant and that of the AGC system range discriminant are similar.
The mean and the standard deviation of the range discriminant is essentially the same, and it is the
correlation between the early and late gates that distinguish the two systems.

5 DISCUSSION

The radar return from a chaff cloud is inherently statistical, since it is composed of the echoes of a large
number of statistically independent scatterers. The advantage of the numerical technique developed in this
report is that it generates a random sample of the received field strength from the chaff cloud, after
processing by the matched filter. After processing this signal by the detector, we obtain a random sample
of the video signal as presented on an A-scope display. Through Monte-Carlo analysis of this signal, as
processed by the range discriminant, some insight into the statistical effects associated with a range
discriminant operating upon this type of signal has been obtained. This analysis was carried out for a
system employing a linear detector with a first order AGC loop, and one using a logarithmic detector.
Although we have also obtained the mean power envelope of the received signal, the statistical analysis
carried out in this report provides information concerning the statistical characteristics of the range
discriminant which cannot be obtained from the mean power envelope of the received signal alone.

The results indicate that as far as the range discriminant is concerned, the statistical characteristics of the
return from within the chaff cloud are remarkably uniform, and largely independent of the signal strength.
For the AGC system, the average value of the range discriminant is close to zero (see Figures 14 and 26).
The standard deviation of the range discriminant was about 0.2 (see Figures 15 and 23). Given that the
maximum of the absolute value range discriminant for this system is 0.8, this indicates that the fluctuations
of the range discriminant about its average value are quite large (compare Figure 13 to Figure 14, and
Figure 22 to Figure 23). The correlation coefficient of the early and late gates was -0.8 (see Figures 15 and
24). This high degree of anti-correlation between the early and late gates demonstrates that the distribution
of each of the early and late gates are not independent, and the combination must therefore be considered
as a two dimensional distribution. The scatter plot of the early and late gates indicates that the distribution
could be approximated by a two dimensional Gaussian distribution (see Figure 19). Thus, the statistical
characteristics of the range discriminant for this system, for the part of the signal returned from within the
cloud, can be cast into the form a 'black-box' statistical model for the purposes of an engineering analysis
of the tracking mechanism. Indeed, the effect of thermal noise upon the range discriminant for this system
can also be characterised by a simple statistical model, with the appropriate parameters. However, the
leading and trailing edges of the received signal from the chaff cloud exhibit a complex statistical structure
which defies such a simple characterisation. Not only do the actual statistical parameters change rapidly
with the position of the tracking gate, but the statistical distributions are most definitely non-Gaussian (in
particular, see Figure 17). In this case, an explicit simulation of the chaff return, such as that developed in
this report, would seem to be the most appropriate way of analysing the effect of the chaff cloud upon the
range tracking mechanism.

Similar conclusions can be drawn for the range discriminant operating with the logarithmic detector. The
mean value of the range discriminant operating on the signal from within the cloud is close to zero (see
Figures 26 and 34).The standard deviation of the range discriminant is about 0.24 (see Figures 26 and 35),
indicating that the fluctuations of the range discriminant are quite large (compare Figure25 to Figure 26,
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and Figure 33 to Figure 34). In this regime, the correlation coefficient is about +0.4, indicating that the
distribution of the early and late gates must also be considered to be a two dimensional distribution (see
Figures 28 and 36). However, the scatter plot of the early and late gates (see Figure 31) indicates that the two
dimensional distribution of the tracking gates is non-Gaussian. The effect of thermal noise is also simply
characterised statistically, and, due to the averaging effect of the first order filter used to implement the
integration for the tracking gates, the two dimensional statistical distribution of the early and late gates is
approximately Gaussian. As with the AGC system, the leading and trailing edges of the returned signal
defy a simple statistical characterisation, and the two dimensional statistical distribution of the early and
late gates is most definitely non-Gaussian. Again, an explicit simulation of the returned signal of the type
developed in this report is a better method of handling the analysis of the range tracking mechanism.

The ultimate goal in using chaff to protect ships is to either distract, or seduce the range tracking
mechanism of the ASM from tracking the ship. If seduction is required, then one obvious requirement is
that the return from the chaff cloud be significantly larger than the return from the ship, as processed by
the radar seeker in the ASM. A typical ship, like the chaff cloud, is a target whose dimensions are of the
same size or larger than the pulse widths considered in this report. Therefore, for an analysis of the
seduction process to be valid, the time domain RCS profile of the ship is also required. Although we do not
analyse this aspect of the proa'lem in this report, we can make following observations based upon some of
the results of this report. The CW RCS of the chaff cloud used in this report, a 200 m radius sphere
containing 108 isotropically random half-wave dipoles, was 14740 m2. The effect of the pulse width upon
the perceived RCS profile of the chaff cloud can be characterised by a loss relative to the CW RCS. This loss
figure varies according to the geometry of the cloud, the pulse width, and the type of detector. A typical
loss figure for the 0.1 pts pulse width radar was about 15dB relative to the CW RCS, and for the 0.5 P
pulse width radar 8db. When a pulsed radar with AGC is used, the loss figure was reduced by about 3db.
Indeed, typical values for the RCS profile in our simulations for the 0.1 ILs pulse width radar was of the
order 500 in2 , except for the AGC system where a value of 1400 m2 was typical. In view of the fluctuating
nature of the radar return from the chaff cloud, these figures should be regarded as representative values
only. If we wish to ensure seduction is successful, on the grounds that the RCS profile of the received chaff
signal dominates the RCS profile of the ship, then the RCS profile of the ship needs to be significantly less
than 500 m2 for the 0.1 pts pulse width radar. It may be passible tlat such a stringent requirement is not
totally necessary, but to prove this would at least require an analysis of the time domain RCS profile of the
ship, similar to that developed for the chaff cloud developed in this report.

We now consider the various ways in which calculations of the type performed in this report could be
extended. In practice, the cloud will not be spherical, or any other nice geometrical shape. Given that the
above results seem to be insensitive to the absolute power levels of the chaff return, it is possible that the
statistical characteristics of the range discriminant discussed above will carry over to a more physically
realistic cloud shape. The spherical cloud used in this report is not fundamental to the calculations, but a
simple shape used to obtain representative results. A more physically realistic shape could be used if
desired.

Since we have not included doppler effects, we cannot strictly speaking obtain spectral characteristics of
the returned signal with this technique. We can only obtain the return from some randomly chosen
configuration of scatterers. In effect, we obtain a random -ample from the first order probability
distribution in time of the received pulse shape, and the statistical analysis carried out in this report
concerns this probability distribution. However, were we to have available a realistic model for the time
evolution of the scattering amplitude function of each volume element of the chaff cloud, then the
technique used in this report would be suitable for tracing the time evolution of the returned signal from
the chaff cloud for a pulsed radar on a pulse by pulse basis. Since we would obtain the matched filtered
signal prior to detection, the non-linear processing of this signal can be accurately modelled. The resulting
simulation of the time evolution of the range discriminant could be then subjected to a statistical analysis
which includes a spectral analysis of the received signal. With the type of non-linear transformations
considered in this report, it is clear that any understanding of the spectral characteristics of the received
pulse shape after this type of signal processing would be closely interwoven with the first order probability
distribution analysed in this report. In short, the type of random sampling developed in this report is a
necessary first step towards a more complete understanding of the spectral characteristics of the received
pulse shape in this class of radar. It should also be pointed out here that this type of Monte-Carlo statistical
analysis need only be performed for a radar with a poor doppler resolution. A coherent system with a

UNCLASSIFIED 33



ERL-0634.RR UNCLASSIFIED

reasonable doppler resolution would avoid non-linear processing of the type analysed in this report so as
not to corrupt the spectral content of the received signal. In this case analytical expressions could easily be
developed, using the same information concerning the time evolution of the scattering amplitude function
of the volume elements within the cloud. This would eliminate the need for an explicit Monte-Carlo
simulation proposed here.

Another area where more detailed analysis could be carried out concerns the polarization characteristics of
the returned signal. In the single scattering regime, which is covered in this report, we need only determine
average back scattering cross section for the given distribution of dipoles (eg: isotropically random, or
horizontally random). When a multiple scattering regime is involved, we are forced to consider the bistatic
radar cross section. This is best expressed in terms of a Stoke's Vectors and there is some published
information available on this subject (Dedrick et al. 1978), (Peebles 1984a, 1984b).

We now consider how best to handle the effects of multiple incoherent scattering. To obtain information
concerning the received pulse shape due to scattering from a chaff cloud in this report we have used the
concept of the two frequency correlation function as our method of mathematically describing the chaff
cloud. Therefore, we must use the multiple scattering theories which at least provide a solution for the two
frequency correlation function, using a Stokes's vector representation to account for the inevitable
polarisation effects. Once the two frequency correlation has been determined, the sampling theory used in
this report can be used to obtain a random sample of the time domain return for a given transmitted pulse
shape. Many of the scattering theories of this type for which usable mathematical results can be obtained
assume that the particles are large relative to the incident wavelength, which implies that forward
scattering is the dominant process (for examples, see Ishimaru 1978, Ishimaru 1975). This simplifying
assumption does not apply to chaff clouds. Supposing that the two frequency correlation can be obtained
from one such theory, it is unlikely to greatly improve our understanding of the effect of the returned signal
upon the range discriminant. The results of the simulations in this report indicate that it is the leading and
trailing edges of the returned signal that display unusual behaviour, and it would appear that this
behaviour is not sensitive to the details of the shape of the cloud. However, an improved understanding if
the two frequency correlation function would greatly improve our understanding of the chaff profile in the
sense of providing a more realistic assessment of the received RCS profile of the cloud. It would quantify
the spreading out in time of the impulse response of the chaff cloud due to the multiple scattering processes
the beam would undergo before emerging from within the cloud.

6 CONCLUSIONS

In this report we have developed a technique for the simulation of the time domain return from a chaff
cloud suitable for a pulsed radar. A numerical technique was developed which obtains a random sample
of the time domain return from a cloud of stationary scatterers. The algorithm consists of obtaining a
random sample of the complex Gaussian random series which the two frequency correlation function
represents, and using Fourier Transform methods to obtain the received pulse shape given the transmitted
pulse shape. This technique is suitable for analysing the effect of the return from a chaff cloud for pulsed
radars, since the doppler resolution of this class of radar is sufficiently poor that doppler effects can be
ignored. Since the time domain return from the chaff cloud has been sampled, we can compute the effect
of non-linear transformations upon this signal directly, with no further approximations.

One application of this technique was to assess the RCS profile perceived by various types of detectors,
relative to the RCS of a steady point target. In this way, the RCS profile of the cloud analysed in this report
can be compared directly with the available experimental data. Analytical results were compared to
simulation results. For the example treated in this report, a 200 m radius sphere containing 10° isotropically
random half-wave dipoles, the 0.1 pis pulse width radar experienced losses of about 15dB relative to the
CW RCS, and for the 0.5 ps pulse width radar the losses were about 8dB for a radar using a logarithmic
detector. When a pulsed radar with AGC is used, these losses were further reduced by about 3db.
A second application of this technique was to examine the statistical behaviour of the range discriminant.
The results indicate that the statistical characteristics of the range discriminant operating on t' ie return from
within the cloud can be distinguished from that due to thermal noise alone. The transition between the two
distinct regimes, the leading and trailing edges of the chaff return, each have their own distinctive statistical
characteristics. These characteristics appear to be independent of the pulse widths considered, although
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some differences were found between the AGC system and the log detector system. Although we have
used a spherical cloud in these calculations, this assumption is not critical, and the results appear to be
insensitive to this assumption. Other shapes could easily be used in these calculations if desired.
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APPENDIX I THE SCATTERING CROSS SECTION OF RANDOMLY
ORIENTATED DIPOLES ACCORDING TO THE CHU RESONANCE FORMULAE

In this Appendix we compute the average total scattering cross section for a randomly orientated half wave
and full wave dipole, using the Chu resonance formula for the bistatic radar cross section. We consider first
isotropically random orientation for the dipoles, then horizontally aligned random orientated dipoles. In
all cases we only consider a linearly polarised incident wave, thus avoiding the need to invoke the Stokes's
parameters.

Ei

EEoo

Figure 1.1 Incident and scattered angle geometry.

The Chu resonance formulae for the bistatic radar cross section is given in Equations 1.1 and 1.2 for the half
wave dipole and the full wave dipole respectively (see for example, Mack, Reiffen 1964). Here, Oi and 0o are
the angles defined by the propagation of the incident and scattered waves respectively to the axis of the
dipole (see Figure 37). The component of the field vector normal to the axis of the dipole cannot induce a
current along the dipole axis. Therefore these formulae refer to the radar cross section of the component of
the field along the dipole axis.

/ • 2 1 2

cos~cO cos-cose.

06, 1) a(@ ,e.cX 2 C ~ 20
0 h sin 0o si- e J 1.1

sinizcose, 2 (sin (,cos (8) 2

a(8,) b 0(00.e) CfX2( sin 2e00 ) sin2 ei 1.2

The values of Ch and Cf can be derived from a suitable normalisation of the gain patterns, and are given by:

2 -2

Ch=4J[ 1 3o CSOsn 1.3h sin nd 1.

-2

C =4 initcosO sin Ode 1.4

f X sineO)

These quantities can be evaluated in terms of the Si and Ci integrals (see for example Wolff 1988), or eval-
uated numerically using the mathematical package of your choice.
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The Chu Resonance formula does not include the effect of losses in the scatterer. Hence, the total scattering
cross section will be approximated here by the scattering cross section:

(I) I C(, i)dno 1.5

4n

In this case, the total scattering cross section for a given incident angle in the thin wire geometry is:

(ti) = at( 0o) = Ifsin 0 ob(0o, O)d 0o 1.6

0

These formulae need to be related to the dipole geometry as shown in Figure 38. To obtain the appropriate
geometrical transformations of the angles involved we follow the treatment of Dedrick et al. (1978). The ori-
entation of the dipole relative to the incident plane wave is described by the angles (0,0). The vector triad
(fi, 1, P) forms a right handed system of unit vectors; ft is the unit vector in the direction of propagation,

and the electric field is in the plane defined by i and t. Since we shall only be considering linearly polarised
waves, we shall assume that the incident electric field is along the i-axis only.

Y

a

S~z

Figure 1.2 Co-ordinate for dipole orientation used in average RCS calculation.

A key feature of the geometry of the thin wire geometry is that only the component of the electric field in
the plane formed by the dipole and the direction of the plane wave propagation will cause an induced
current. Hence, we need to compute the component of the electric field along the dipole, given the
orientation of the dipole relative to the incident wave vector. Straightforward computation shows that the
component of El along the dipole axis, EP, is given by:

0
cos0 sin0sin 4

cos2 + sin2Osin 1.7

cos2 2

COS2 0 + sin2 0 sinC2
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O = ýjEIj 2 co (0)Sn 0) 1.8
cos (0)+ sin2 (O)sn 2 (0)

Hence, providing we can relate the thin wire geometry angle 0B to the dipole orientation specified by the
angles (0,0), the scattering cross section is

cos2e
oC(O, 0) = Ot(0i) cos2 +sin 2 0sin2 .

The average value of the scattering cross section, given a uniform distribution over (0,0), is therefore

at -~ (e.) 2C2077sinOdOdO 1.10
S4n t(f cos 0+ sin2 0sin sn.

To simplify this integral, we transform the variables (0,0) to (0i,4) via A1.11, following Dedrick et al. (1978).

cosei = sin0coso

cos0 cos0 1.11

C 1-sinV0cos2

The range of (0i,4j) is that of (9,0). Some straightforward but tedious algebra shows that the Jacobian of this
transformation is

S= sin'O I 1.12

Hence, the integral for the average scattering cross section in this case becomes:

(at) Z- Jf crt(i)cos2 O sinOid0idOi
4n

1.13

= ¼JGt(9i)sinGid0

0

Thus, the average of the scattering cross section over all orientations can be written as the product of two
identical one dimensional integrals. Indeed, if Equations 1.1 and 1.2 respectively are substituted into
Equation 1.13, and simplified according to Equations 1.3 and 1.4, the final result is

X • 2' -2 (0.159154943...) 1.14

This result holds for both half-wave and full wave dipoles, with isotropically random orientation. The
standard expressions for the average back scattering cross section and the co-polarised back scattering
cross section are easily derived from the above analysis, and the results are those quoted in the body of this
report.

When the dipoles assume a random orientation in the plane of the incident radiation, the algebra is
considerably simpler (ie: *-0, 0 is random). In this case the average scattering cross section for an incident
field polarised in the plane of the dipoles is given by:
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(at) •fa(O,)d~i 1.15

0

The result for the half dipole is:

•22 2,2
(a)~22@JCos cose ol

W .01 sinO J sieej 1.16

= )2(0.2335158427...)

For the full wave dipole, the result is:

22 sin7rcos 2 dO (sinxcosO 2 sinede

t sin 2 f sin 0 )1.17

= ,2 (0.3861911457...)

The integrals can be expressed in the form of Si and Ci integrals, or evaluated with the mathematical pack-
age of your choice.
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APPENDIX II THE SCATTERING FUNCTION FOR A DISTANT SPHERICAL
CLOUD OF UNIFORMLY DISTRIBUTED SCATTERERS

In this Appendix we calculate the scattering function for a distant, spherical cloud of uniformly distributed
scatterers; that is, a cloud which is wholly contained within the 3dB beam width of the radar. The basic
formulae for E(R) is:

E( = 1 (GtQ J(2 4)p(ab)exp( 2 (y))dA H.1
AGAOi RO)

2

;.2 Gt(io)II

PO = Pt (4)311.2

Here, P0 is the power that would be received from a point target with unity radar cross section. For a distant
cloud of uniformly distributed scatterers, we approximate Equation U.1 by

2.(R) - PofP (ab)exP(-2 (y))dA U1.3
A

For a spherical cloud of radius RI, whose centre is located at range R0 from the radar we obtain:

"(Ro+z) = P0  f (2xrdr)p(c)exp(-2p(at)(RF ir2-tzi) 11.4

0

-PO(2nra) exp(-2p(at)z)(exp(-2p(a)IzI)(zI+

-exp(-2p(at)Rc)(R + 2atK))

As discussed in the main text, the critical parameter is the ratio of the mean free path of scattering to the
radius of the cloud, p (at)RC. If this value is small relative to unity, then Equation 11.4 becomes:

.(R0 + z) - POp (ab) (R - z).5

The Continuous Wave (CW) RCS of the cloud, Y0j given by the integral of _(R) over the range of R. Thus,

R, ((b) "V 2 ntRc

7-0 = P0 f .(R)dR = (2-(at))i(Rc + 2p(at)exp(4p(at)Rd
-R 11.6

S~xRC

8(P (am) 2 8((t))2exp(4p.(at)Rd)

In the limit of small values of p1(Gt)RC, where shielding effects are negligible, it is easily shown that
Equation 11.6 becomes:

43 c1.7

o0"C LARcpS(crb)
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